The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
نویسندگان
چکیده
منابع مشابه
Subspace Regression in Reproducing Kernel Hilbert Space
We focus on three methods for finding a suitable subspace for regression in a reproducing kernel Hilbert space: kernel principal component analysis, kernel partial least squares and kernel canonical correlation analysis and we demonstrate how this fits within a more general context of subspace regression. For the kernel partial least squares case a least squares support vector machine style der...
متن کاملA Reproducing Kernel Hilbert Space Approach to Functional Linear Regression
We study a smoothness regularization method for functional linear regression and provide a unified treatment for both the prediction and estimation problems. By developing a tool on simultaneous diagonalization of two positive definite kernels, we obtain shaper results on the minimax rates of convergence and show that smoothness regularized estimators achieve the optimal rates of convergence fo...
متن کاملKernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space
A family of regularized least squares regression models in a Reproducing Kernel Hilbert Space is extended by the kernel partial least squares (PLS) regression model. Similar to principal components regression (PCR), PLS is a method based on the projection of input (explanatory) variables to the latent variables (components). However, in contrast to PCR, PLS creates the components by modeling th...
متن کاملNonparametric Logistic Regression: Reproducing Kernel Hilbert Spaces and Strong Convexity
We study maximum penalized likelihood estimation for logistic regression type problems. The usual difficulties encountered when the log-odds ratios may become large in absolute value are circumvented by imposing a priori bounds on the estimator, depending on the sample size (n) and smoothing parameter. We pay for this in the convergence rate of the mean integrated squared error by a factor logn...
متن کاملQuantile Regression in Reproducing Kernel Hilbert Spaces
In this paper we consider quantile regression in reproducing kernel Hilbert spaces, which we refer to as kernel quantile regression (KQR). We make three contributions: (1) we propose an efficient algorithm that computes the entire solution path of the KQR, with essentially the same computational cost as fitting one KQR model; (2) we derive a simple formula for the effective dimension of the KQR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of the Institute of Statistical Mathematics
سال: 2019
ISSN: 0020-3157,1572-9052
DOI: 10.1007/s10463-019-00733-3